CO2 sequestration through direct aqueous mineral carbonation of red gypsum
نویسندگان
چکیده
منابع مشابه
Sequestration of Martian CO2 by mineral carbonation
Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth's crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysi...
متن کاملCarbon dioxide sequestration in cement kiln dust through mineral carbonation.
Carbon sequestration through the formation of carbonates is a potential means to reduce CO2 emissions. Alkaline industrial solid wastes typically have high mass fractions of reactive oxides that may not require preprocessing, making them an attractive source material for mineral carbonation The degree of mineral carbonation achievable in cement kiln dust (CKD) underambienttemperatures and press...
متن کاملInvestigations of the Mechanisms that Govern Carbon Dioxide Sequestration via Aqueous Olivine Mineral Carbonation
Coal, in particular, and fossil fuels, in general, are well positioned to supply the world’s energy needs for centuries to come if the environmental challenges associated with anthropogenic carbon dioxide emissions can be overcome. Carbon dioxide sequestration is being actively pursued as an option to reduce CO2 emissions, while still enjoying the advantages of low-cost fossil fuel energy. Mine...
متن کاملCommentary: Ex Situ Aqueous Mineral Carbonation
CO2 conversion to calcium and magnesium carbonates has garnered considerable attention since it is a thermodynamically downhill pathway to safely and permanently sequester large quantities of CO2. This seminal work performed at The National Energy Technology Laboratory in Albany (NETL-Albany) reports the conversion of calcium-and magnesium-bearing silicate minerals, such as olivine [(Mg, Fe)2Si...
متن کاملMineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.
The increasing CO(2) concentration in the Earth's atmosphere, mainly caused by fossil fuel combustion, has led to concerns about global warming. A technology that could possibly contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term geological storage) or the ex-situ mineral sequestration (controlled industrial reactors) of CO(2). In the present study, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Petroleum
سال: 2018
ISSN: 2405-6561
DOI: 10.1016/j.petlm.2017.10.002